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SUMMARY 

The concept of ‘logic programming’, and its practical application in the programming 
language Prolog, are explained from first principles. The ideas are illustrated by describing in 
detailmone sizable Prolog program which implements’ a simple compiler. The advantages and 
practicability of using Prolog for ‘real’ compiler implementation are discussed. 
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INTRODUCTION 

This paper aims to provide an introduction to the concept of ‘logic programming”. 2 ,  

for people with experience in other programming languages. The  emphasis is on those 
aspects which have been put to practical use in the programming language Prolog4. 
developed at the University of Marseille. The  ideas are illustrated by discussing at 
length one main example, consisting of a very simple compiler written in Prolog. 
Although this ‘toy’ compiler has been made as simple as possible for didactic purposes, 
the techniques employed are taken from a ‘real’ implementation in Prolog of a compiler 
in practical use. This example has been chosen with the additional purpose of 
demonstrating the particular advantages of Prolog for compiler writing. The reader is 
expected to be broadly familiar with various conventional programming languages, but 
no knowledge of symbolic logic is assumed. Some acquaintance with the issues 
involved in writing a compiler would be an advantage. 

LOGIC PROGRAMMING 

The principal idea6 behind Iogic programming is that an algorithm can be usefully 
analysed into a logical component and a control component: 

algorithm = logic + control 

Roughly speaking, the logical component defines what the algorithm does, and the 
control component prescribes how it is done efficiently. 

The  logical component can be expressed as statements of symbolic logic. For this 
purpose, one normally only needs to consider a restricted part of logic reduced to a 
standard form known as ‘Horn clauses’. The  language of this subset will now be 
described from a conventional programming standpoint. The  notation and ter- 
minology will be that used in Prolog. 
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Syntax 

a compound term. 
The data objects of the language are called terms. A term is a constant, or a zmiable or 

The constants include integers such as: 

0 1 999 

and atoms such as: 

a nil = := ‘Algol-68’ 

The symbol for an atom can be any sequence of characters, which in general must be 
written in quotes unless there is no possibility of confusion with other symbols (such as 
variables, integers). As in conventional programming languages, constants are definite 
elementary objects and correspond to proper nouns in natural language. 

Variables will be distinguished by an initial capital letter, e.g. 

X Value A A1 

If a variable is only referred to once, it does not need to be named and may be written as 
an ‘anonymous’ variable indicated by a single underline character. 

A variable should be thought of as standing for some definite but unspecified object. 
This is analogous to the use of a pronoun in natural language. Note that a variable is not 
simply a writeable storage location as in most programming languages. Compare 
instead the variable of pure Lisp, which is likewise a ‘stand-in’ for a data object rather 
than a location to be assigned to. 

The structured data objects of the language are the compound terms. A compound 
term comprises afunctor (called the principal functor of the term) and a sequence of one 
or more terms called arguments. A functor is characterized by its name, which is an 
atom, and its arity or number of arguments. For example, the compound term whose 
functor is named ‘point’ of arity 3 ,  with arguments X ,  Y ,  and 2, is written: 

po in t (X ,  I’, 2) 

Functors are generally analogous to common nouns in natural language. One may think 
of a functor as a record type and the arguments of a term as fields of a record. 
Compound terms are usefully pictured as trees. For example, the term: 

line(point(X1, 1’1, Z),  poin t (X2,  112,Z)) 

would be pictured as the structure: 

Sometimes it is convenient to write a compound term using an optional infix notation, 
e.g. 

x+ 1’ ( P ;  Q )  

+ ( X ,  13 ; (P ,  Q )  
instead of 
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Finally, note that an atom is treated as a functor of arity 0. 

dictionary will be either the atom ‘void’ or a compound term of the form: 
Suppose we wish to give a formal definition of a data type called a ‘dictionary’. A 

dic((term l) ,  (term 2 ) ,  (term 3) ,  ( t e r m 4 ) )  

where the arguments (term 3 )  and (term 4 )  are also dictionaries whilst (term 1 )  and 
(term 2 )  are of unrestricted type. (Here, and throughout this paper, names in 
angular brackets are used as ‘meta-variables’ to symbolize constructs of‘ the ‘object 
language’ being discussed, cf. the non-terminal symbols of a Backus-Naur form (BNF) 
grammar.) The  required definition of the data type ‘dictionary’ is expressed in logic by 
the following two statements: 

dictionary(ooid). 
dictionary(dic(X, E’, D 1 , 0 2 ) )  :- dictionary(Dl), dictionary(D2). 

Here ‘dictionary( )’ is a special kind of functor called a predicate, analogous to a verb in 
natural language- (Predicates are distinguished from other functors only by the 
contexts in which they occur.) A term with a predicate as principal functor is called a 
boolean term, and is analogous to a simple statement in natural language. 

In general, statements of logic can be considered to be a shorthand for descriptive 
statements of natural language. A statement of the form: 

( P )  :- (Q), (R) ,  (-..). 
should be read as: 

(P) if (8) and ( R )  and (...). 

Thus the two statements above might be read as: 
‘zwid’ is a dictionary. 
‘d ic (X,  E’, Dl,D2)’  is a dictionary if D1 is a dictionary and 0 2  is a dictionary. 

Any variables in a statement are interpreted as standing for arbitrary objects, so a more 
precise reading of the second statement would be: 

For any X ,  E’, D1 and 0 2 ,  ‘d ic (X,  E’, Dl,D2)’  is a dictionary if D l  is a dictionary 
and 0 2  is a dictionary. 

Note that the variables in different statements are completely independent even if they 
have the same name, i.e. the ‘lexical scope’ of a variable is restricted to a single 
statement. 

The  kind of logic statements we are considering are called clauses. For our purposes, 
a clause comprises a head and a body. The head is a boolean term and the body is a 
sequence of zero or more boolean terms called goals. In general a clause is written: 

(head)  :- (goal l),  (goal 2 ) ,  (...). 
If the number of goals is zero, we speak of a unit clause, and this is written: 

(head).  

Semantics 
The semantics of the language we have described should be clear from its informal 

interpretation. However, it is useful to have a precise definition. The  semantics will tell 
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us which boolean terms can be considered true according to some given clauses. Thus 
in the case of our clauses for ‘dictionary( - )’, we shall know that a term ( t e r m )  is a 
dictionary if the boolean term: 

dictionary( ( t e r m ) )  

is true. 

clauses. 
Here then is a recursive definition of what will be called the declarative semantics of 

A term is true if it is the head of some clause instance and each of the goals (if 
any) of that clause instance is true, where an instance of a clause (or term) is 
obtained by substituting, for each of zero or more of its variables, a new term 
for all occurrences of the variable. 

The  unary predicate ‘dictionary(J’ specified a data type. More generally, predicates 
are used to express relationships between objects. For example, we might use 
‘concatenated((l), (2), (3))’ t G  mean that list ( 3 )  consists of the elements of list ( 1 )  
followed by the elements of list (2). Thus 

concate~ated((a.6.c.d.nil), 
(1.2.3.niZ), 
(a.b.c.d. 1.2.3 .nil)) 

is true, where a list is either the atom ‘nil’ or a term formed from the binary functor ‘.’ 
whose second argument is a list, i.e. 

list( nil). 
list(.(X, L)) :- list(L). 

In general, as above, we write the functor ‘.(-,A’ as a right-associative infix operator so 
that, for example, the first list mentioned is equivalent to the standard form 
‘.(a,.(6,.(c,.(d,nil))))’ and should be pictured as: 

The  following clauses define the predicate ‘concatenated( --- , , )’: 

concatenated(ni1, L, L). 
concatenated((X.Ll), L2, (X.L3)) :- concatenated(l1, L2, L3). 

The  clauses may be read as: 

l’he empty list concatenated with any list L is simply L. A non-empty list 
consisting of X followed by remaining elements L1 Concatenated with list L2 
is the list consisting of X followed by remaining elements L3 where L1 
concatenated with L2 is L3. 
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So far we have looked on clauses as a means of‘ specijjling relationships between 
objects. This is the traditional view of the purpose of logic. 

Now consider what has to be done for relationships expressed in logic to be computed 
efficiently. For example, given terms (term 1) and (term 2), how can one find a term 
(term 3 )  such that: 

concatenated((term l) ,  (term 2 ) ,  (term 3)) 

is true? The  major discovery of ‘logic programming’ is that the clauses themselves can 
often provide the basis of the procedures required. In such cases, it is only necessary to 
supply suitable control information to specify how the clauses are to be used effectively. 
In brief, logic has a ‘procedural interpretation’. 

The procedural interpretation treats a predicate as a procedure name, the head of a 
clause as a procedure entry point and a goal as a procedure call. A procedure is a set of 
clauses with the same head predicate. For example, the clauses for ‘concatenated( --- , , )’ 
can be considered to be a procedure for concatenating the elements of two given lists 
(amongst other uses). The  procedure has two entry points corresponding to whether or 
not the first of the two input lists is empty. One of the clauses makes a recursive call to 
the same procedure. 

Before we go on to consider the kind of control provided in Prolog, we should observe 
that not all sets of clauses make equally effective procedures. Some clauses would 
require unrealistically sophisticated control information to be of practical use. Much of 
the art of logic programming is to formulate the problem in such a way that it can be 
solved efficiently using the control mechanisms available. This soon comes quite 
naturally to someone with programming experience, as really it is just what one does in 
any other programming language; the ingenuity required is no greater, and usually less. 
Indeed, as we shall see, one of the main attractions of logic programming is that often a 
natural specification of an algorithm and a good implementation are one and the same. 

THE PROGRAMMING LANGUAGE PROLOG 

Introduction 
A remarkably simple form of control suffices for many practical applications of logic 

programming. This point was first realized at Marseille and is the basis of the 
programming language Prolog developed there. From now on we shall restrict our 
attention to Prolog. 

If we think back to the declarative semantics of clauses, it is clear that the order of the 
goals in a clause and the order of the clauses themselves, are both irrelevant to the 
declarative interpretation. However, these orderings are generally significant in Prolog 
as they constitute the main control information. In other respects a Prolog program is 
just a set of clauses. 

When the Proiog system is executing a procedure call, the clause ordering determines 
the order in which the different entry points of the procedure are tried. The  goal 
ordering fixes the order in which the procedure calls in a clause are executed. The 
‘productive’ effect of a Prolog computation arises from the process of ‘matching’ a 
procedure call against a procedure entry point. 

Really there are two different ways of looking at the meaning of a Prolog program. We 
have already discussed the declarative interpretation which Prolog inherits from logic. 
The alternative way is to consider, as for a conventional programming language, the 
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sequence of steps which take place when the program is executed. This is defined by the 
proceduraz semantics of Prolog. This semantics will tell us what happens when a goal 
(procedure call) is executed. The  result of the execution will be to produce true 
instances of the goal (if there are any). Thus the procedural semantics is governed by 
the declarative. Here then is an exact description of the procedural semantics. 

To execute a goal, the system searches for the first clause whose head matches 
or un2Jies with the goal. The  untjication process7 finds the most general 
common instance of the two terms, which is unique if it exists. If a match is 
found, the matching clause instance is then activated by executing in turn, 
from left to right, each of the goals of its body (if any). If at any time the system 
fails to find a match for a goal, it backtracks, i.e. it rejects the most recently 
activated clause, undoing any substitutions made by the match with the head 
of the clause. Next it reconsiders the original goal which activated the rejected 
clause, and tries to find a subsequent clause which also matches the goal. 

Let us now return to the clauses for ‘concatenated( --- , , )’: 

concatenated( nil, L, L). 
concatenated((X. L l ) ,  L 2 ,  (X.L3)) :- concatenated(L1, L2, L3). 

and see how they can be used to concatenate two lists. Suppose we wish to concatenate 
the lists ( a . 6 . d )  and ( 1 . 2 . d ) .  This will be achieved by executing the goal: 

concatenated((a.6.nif), (1.2.nil), Z )  

The result of the execution will be to substitute the required value for the variable Z. 
The goal matches only the second clause, and becomes instantiated to: 

concatenated((a.b.nil), (1.2.ni4, (a .Z l ) )  

since this is the most general common instance of the original goal and the head of the 
matching clause. The  name given to the new variable Z1 is arbitrary. The  body of the 
matching clause instance gives us a new goal (or recursive procedure call): 

concatenated((b.nil), (1.2.nd), Z l )  

The process is repeated, a second time giving rise to a further goal: 

concatenated(nil, (1.2.nil), 2 2 )  

which this time matches only the first clause. Execution is now complete as there are no 
outstanding goals to be executed. The  original goal has been instantiated to: 

concatenated((a.b.ni), (1.2.nif), (a.b.1.2.nil)) 

a true boolean term. Thus the effect of the execution is to instantiate 2 to: 

(a.6.1.2.nil) 

the term originally sought. 
Here we have used ‘concutenated((l), ( 2 ) ,  (3))’ as a procedure which takes two 

‘inputs’ ( 1 )  and (2) and returns one ‘output’ (3). However, the procedure is much 
more flexible than this. For example, if (3) is also provided as input, 
‘concatenated( --- ,, , )’ acts as a procedure which checks whether (3) is the concatenation 
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of (1) and (2). Thus execution of the goal: 

concatenated(( a d ) ,  (b.nil), ( a d ) )  

will fail whereas: 

concatenated( ( a d ) ,  (b.niZ), (a.6.74) 

will succeed. 

consider what happens when the goal: 
More striking is the behaviour when only ( 3 )  is provided as input. For example, 

concatenated(L, R, ( a . 6 . d ) )  

is executed. This goal will match both clauses for ‘concatenated( --- , , )’. The first match 
returns an immediate result: 

L = nil 
R = (a.b.nil) 

Notice how the result returned consists of two ‘output’ values. If this result is 
subsequently rejected, backtracking will cause the second possible match for the 
original goal to be considered. The  match instantiates the top goal to: 

concatenated((a.Ll ), R, (a.b.nil)) 

and a new goal is produced: 

concatenated(L1, R, (6.nil)) 

This goal again matches both clauses. The  first match produces another solution to the 
original goal: 

L = (a.niZ) 
R = (6.nil)  

In this way backtracking causes the procedure to generate all possible pairs of lists L 
and R which, when concatenated, yield (a.6.nil). 

These examples have illustrated a number of characteristic features of Prolog 
procedures. Firstly, when a procedure returns, the result sent back may consist of more 
than one value, just as, in the conventional way, more than one value may be provided as 
input. Furthermore, the input and output positions do not have to be fixed in advance 
and may vary from one call of the procedure to another. In effect, Prolog procedures can 
be ‘multi-purpose’. These features will play an important part in the compiler which is 
the main example of Prolog to be discussed later. 

The Logical Variable 
The flexibility of Prolog procedures can be seen as a special case of a more general 

phenomenon. The variable in Prolog behaves in a particularly pleasing way, which is 
governed by the high-level pattern matching process of unification. Let us consider a 
simple but somewhat artificial example using the ‘concatenated( --- , , )’ procedure. The 
task is to ‘treble’ a given list to produce a list consisting of three consecutive copies of 
the original, e.g. 

( a . 6 . c . d )  + (a.6.c.a.6.c.a.6.c.niZ) 
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One way to define this is to say that the list LLL is the treble of the list L if LLL consists 
of L concatenated with a list LL which is the result of concatenating L with itself, i.e. 

treble(L, LLL) :- 
concatenated(L, LL, LLL), 
concatenated(L, L,  LL). 

In most list processing languages one would have to perform the second step first. That 
is, the doubled list LL would first be constructed and then another copy of L would be 
concatenated on the front. The  same effect would be achieved in Prolog by expressing 
the two goals in the opposite order. However, the Prolog clause also functions perfectly 
well as it stands. Let us see how this is, by executing the goal: 

treble( (a .  b.nil), X) 
Immediately we get the pair of goals: 

concatenated((a.b.niZ), LL, X), 
concatenated((a.6.niZ), (a.b.niZ), LL)  

The first of these goals has an uninstantiated variable as its second argument, but 
nevertheless the execution proceeds in the familiar way, recursing twice to hit the 
bottom of the recursion with the subgoal: 

concatennted(ni1, LL, X 2 )  

The net result of executing this final subgoal is that LL is left uninstantiated and the 
original X is instantiated to: 

X = (a.6.LL) 

Thus the result of the original ‘treble’ goal has been partially constructed, but the value 
to be returned contains the uninstantiated variable LL. Execution of the goal: 

concatenated((a.b.niI), (a.b.niZ), LL) 

completes the picture by ‘filling in’ the correct value of LL: 

LL = (a.b.a.b.niZ) 

Thus we get finally the correct result: 

X = (a.b.a.b.a.6.nil) 

We refer to the variable in Prolog as the ‘logical’ variable to draw attention to its 
special behaviour exemplified above. Basically there is no assignment as such in Prolog, 
and a variable’s value, once specified, cannot be changed (except through backtrack- 
ing). However, the variable’s value need not be fixed immediately, and may remain 
unspecified for as long as is required. In particular, if a variable corresponds to a 
component of a data structure to be output by a procedure, the value of the variable can 
be left unspecified when the procedure ‘returns’. The value may then later be filled in 
by another procedure in the course of the normal matching process. 

The  logical variable has the further necessary feature that when two uninstantiated 
variables are matched together, they become linked as one; any value subsequently 
given to one variable simultaneously instantiates the other. From a conventional 
programming standpoint, one can imagine a ‘pointer’ or ‘reference’ to one variable 
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being assigned to the other, with subsequent ‘dereferencing’ being carried out 
automatically where required. 

Consider how the processing of the ‘treble’ example might be simulated in a 
conventional language (e.g. Algol-68, Pop-2, Lisp); i.e. what steps would correspond 
to execution of the goals: 

concatenated( (a .  b. nil), LL, x), 
concatenated(( a.b.nil), (a.b .nil), LL) 

in that order? The effect of the first goal would have to be simulated by creating a new 
list (a.b.dummy) with an arbitrary value ‘dummy’ as the remainder of the list. This list 
would be assigned to the variable X and a pointer to the location containing the 
arbitrary value would be assigned to LL. For the second goal, one would create the list 
(a.b.a.b.ni1) and assign it to the location indicated by the pointer previously assigned to 
LL. In this way the arbitrary value ‘dummy’ would be overwritten to complete 
(a.b.a.b.a.b.ni1) as the value of X .  In the style of Algol-68, these steps might be written 
as: 

list dummy; 
ref list LL : = dummy; 
ref list X : = concatenate([a, b ] ,  LL); 
value of LL : = concatenate([a, b] ,  [a,  b ] ) ;  

where the arguments and result of procedure ‘concatenate’ are of mode ‘ref list’. 
The original Prolog version achieves the same effect, but without the programmer 

having to bother about assignments and references. In fact it is the Prolog system which 
takes care of these machine-oriented details. ‘The Prolog programmer understands the 
‘treble’ procedure primarily from its declarative reading; from the declarative point of 
view, even the order of the two goals is irrelevant, let along the procedural details 
involved in execution. 

Prolog programming requires a certain change of outlook on the part of the 
programmer, but this is soon acquired with a little practice. The  programmer comes to 
appreciate that Prolog’s logical variable provides much of the power of assignment and 
references, but in a higher-level, easier-to-use form. In a similar way, the disciple of 
‘structured programming’, working with a conventional language, finds that ‘well- 
structured’ control primitives leave little need for goto and that the program is 
generally easier to understand if gotos are avoided. 

An Example-Looking up Entries in a Dictionary 
To complete this introduction to Prolog, we will now consider an example which will 

have application in compiler writing. The  example involves the data type ‘dictionary’ 
introduced earlier. A dictionary will provide an efficient representation of a set of pairs 
of names with values. Thus the dictionary: 

dic(( name), (va lue) ,  (dic-1 ), (d ic -2) )  

pairs (name)  with (value),  together with all the pairings provided by subdictionaries 
(dic-1) and (dic-2).  We assume that the dictionary is ordered, so that all names in (dic- 
1 )  are before (name),  and all in (dic-2) are after, and both (dic-1) and (dic-2) are 
themselves ordered. (Thus no names can be repeated in an ordered dictionary.) The 
actual ordering relation is arbitrary, but may be thought of as alphabetical order. 
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Ordering relationships will be expressed using the familiar symbol ‘ < ’ for the 2-place 
predicate ‘is before’ and ‘ > ’ for ‘is after’. 

As an example, the following is an (alphabetically) ordered dictionary pairing 
English words with their French equivalents: 

dic(salt, sel, 
dic(mustard, moutarde, 

void, 
dic(pepper, poivve, void, void)) ,  

dic(vinegar, vinaigre, void, void)) 

This term is more easily visualized as the tree structure: 

pepper‘. poivre 
4 

Because our dictionaries are ordered, it is possible to find quickly the value (if any) 
associated with a given name, without searching through the entire dictionary. So let us 
now write a Prolog procedure to ‘look-up’ a name in a dictionary and find its paired 
value. The  predicate defined will be 

lookuP((l), (2), (3) )  
meaning ‘name (1) is paired with value ( 3 )  in dictionary (2)’. Given a dictionary: 

dic((name), (value) ,  ( d i c - l ) ,  (d ic -2) )  

we clearly have to distinguish three cases. If the name sought is (name) itself, then the 
required value is simply (value) ,  i.e. 

lookup(Name, dic(Name, Value,-,-), Value). 

Note the use of two ‘anonymous’ variables for the components of the dictionary which 
are not relevant to this case. In the other two cases, we have to look for the required 
name in one of the two subdictionaries of the initial dictionary. If the name sought is 
before (name),  then we must look in the first subdictionary, i.e. 

Name <Name 1, lookup(Name, Before, Value). 
lookup(Name, dic(Name 1 ,-, Before,-), Value) :- 

A similar clause deals with the case where the name sought is after (name); i.e. 

lookup(Name, dic(Name 1 ,-,-,After), Value) :- 
Name> Name 1 ,  lookup(Name, After, Value). 

We have explained these clauses in a procedural way, having in mind the particular 
goal of looking up a given name in a given dictionary to find an unknown value. The 
control information built into the Prolog clauses reflects this aim, i.e. the order of the 
clauses, and the order of the goals in the body of each clause, is chosen to be appropriate 
for the type of goal in mind. Thus, of the three clauses, it is natural to consider the first 
clause first, since it may give an immediate result without further recursive procedure 
calls. Again, in the last two clauses, it is sensible to make the test comparing the order of 
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names as the first goal in each clause, since then the recursive call of ‘lookup’ will only be 
made on the appropriate subdictionary. 

Note that the control information is not strictly essential; if a different clause and goal 
ordering were used, valid results would still eventually be obtained, but the ‘lookup’ 
procedure would not go ‘straight’ to the required result-without the right control, the 
procedure would perform an extremely wasteful exploration of irrelevant parts of the 
dictionary. 

How can one be so sure that valid results will be obtained whatever the control 
information? The  reason is that the clauses for ‘lookup’ have a proper declarative 
interpretation, and the Prolog execution mechanism is guaranteed only to produce 
answers which accord with the declarative interpretation. Although we explained the 
clauses ‘procedurally’, they can be understood entirely declaratively as simple 
statements about dictionaries. For example, the third clause might be read as: 

‘If a name Name has a value Value in a dictionary called After, and N a m e  1 is a name 
which is ordered earlier than Name,  then Name has value Value in any dictionary of the 
form ‘dic(Name 1 ,-,-,After)’ ’. 

Of course, the statement would still be true if the condition on the order of N a m e  and 
Name 1 were omitted. As it stands, the statement is true, but less general than it might 
be. However, if attention is restricted to ordered dictionaries, the three clauses for 
‘Iookup’ are sufficiently general to cover all possible instances of the ‘lookup’ 
relationship. I t  is generally desirable in Prolog programming to make the logical 
statements comprising the program no more general than is necessary to give just the 
truths required. In this way, the Prolog system is prevented from considering 
irrelevant alternatives. This principle could be thought of as a further form of control 
information-the system’s attention is directed (in fact, restricted) to a small but 
adequate subset of all the correct statements which could be made. 

A SIMPLE COMPILER WRITTEN I N  PROLOG 
Overview 

Let us now look at how Prolog can be applied to the task of writing a compiler. We 
shall only consider a simplified example. Imagine we require a compiler to translate 
from a small Algol-like language to the machine language of a typical one-accumu- 
lator computer. The  source language has assignment, IF, WHILE, READ and 
WRITE statements plus a selection of arithmetic and comparison operators restricted 

Table I. Target language instructions 

(1) 
Arithmetic etc. 

literal op. 

ADDC 
SUBC 
MULC 
DIVC 
LOADC 

(2 )  
Arithmetic etc. 

memory op. 

ADD 
SUB 
MUL 
DIV 
LOAD 
STORE 

( 3 )  (4) 
Control Input- 
transfer output etc. 

JUMPEQ READ 
JUMPNE WRITE 
JUMPLT HALT 
JUMPGT 
JUMPLE 
JUMPGE 
JUMP 

8 
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to integers. (A BNF grammar of the language appears later.) The target language 
instructions are given in Table I. Each instruction has one (explicit) operand which 
either ( 1 )  is an integer constant, or (2) is the address of a storage location, or (3)  is the 
address of a point in the program, or (4) is to be ignored. Most of the instructions also 
have a second implicit operand which is either the accumulator or its contents. In 
addition, there is a pseudo-instruction BLOCK which reserves a number of storage 
locations as specified by its integer operand. 

As an illustration of the compiler’s function, here is a simple source program (to 
compute factorials): 

READ VALUE; 
COUNT := 1; 
RESULT := 1; 
WHILE COUNT<VALUE DO 

(COUNT : = COUNT+ 1; 
RESULT : = RESULT+COUNT); 

WRITE RESULT 

Table I1 is the straightforward translation into machine language which the compiler 
will produce. (The columns headed symbol are not part of the compiler’s output and are 
merely comments for the reader.) 

LABELl 

Table 11. Instruction translation into machine language 

symbol: address instruction operand :symbol 

1 READ 21 VALUE 
2 LOADC 1 
3 STORE 19 C O U N T  
4 LOADC 1 
5 STORE 20 RESULT 
6 LOAD 19 C O U N T  
7 SUB 21 VALUE 
8 JUMPGE 16 LABEL2 
9 LOAD 19 C O U N T  

10 ADDC 1 
11 STORE 19 C O U N T  
12 LOAD 20 RESULT 
13 M U L  19 C O U N T  
14 STORE 20 RESULT 
15 JUMP 6 LABELl 

LABEL2 16 LOAD 20 RESULT 
17 WRITE 0 
18 H A L T  0 

C O U N T  19 BLOCK 3 
RESULT 20 
VALUE 21 

Compilation will be performed in five stages (see Figure 1) of which we shall only 
look at the middle three. 

The first stage, lexical analysis, involves grouping the characters of the source text 
into a list of basic symbols called ‘tokens’ (represented by Prolog atoms and integers). 
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Source ( 1 ) Lexical Token 
text 

analysis 

Source 
structure 

generation 

ObJect 
structure 
( relocatable) 

( 4 )  Assembly 

Object 

(absolute) 
- structure ( 5 )  Output Object 

program 

Figure I. Compilation stages 

This stage is relatively uninteresting and will not be discussed further. The second 
stage, syntax analysis, is responsible for parsing the token list. Essentially, the effect of 
the analysis is to recognize the abstract program structure encoded in the characters of 
the source text and give this structure a name. The name will be a Prolog term. For 
example, the name of the statement: 

COUNT : = COUNT+ 1 

will be: 

assign(name(count), expr( + , name(count), const( 1)) )  

which can also be pictured as the tree: 

‘count ‘, 
Since the syntax analysis stage is not our main topic, the discussion of it will be 
postponed to a later section. 

The third stage, code generation, produces the basic structure of the object program, 
but machine addresses are left in a ‘symbolic’ form. These addresses are computed and 
filled in by the fourth stage, assembly. 



110 DAVID H .  D.  WARREN 

We shall not go into the less interesting final stage of outputting an actual obj 
program (as a bit string say). The  result of the assembly stage will be a Prolog te 
which names the object program structure. For example, the name for: 

LOAD 19 
ADDC 1 
STORE 19 

will be: 

(instr(Zoad, 19); instr(addc, 1); instr(store,l9)) 

where the binary functor ';' has been written as a right-associating infix operator, 
the term can be pictured as: 

Note that the ';' functor is only used to indicate sequencing, and that the same seque: 
can be expressed by different terms, e.g. 

(a ;  ( 6 ;  c)) and ( (a ;  6 ) ;  c) 

Compiling the Assignment Statement 
Consider first the problem of compiling the assignment statement: 

( n a m e )  : = (expression) 

The code for this will have the form: 

(expression code) 
STORE (address)  

where (expression code) is the code to evaluate the arithmetic expression (express2 
yielding a result in the accumulator. The  STORE instruction stores this resul 
(address) ,  the address of the location named ( n a m e ) .  

We want to make this semi-formal specification precise by translating it into a Prc 
clause. Now the Prolog term which names the source form is: 

assign(name(X),  Expr )  

where X and Expr are Prolog variables which correspond to the BNF non-termii 
( n a m e )  and (expression) in the semi-formal specification. Similarly, a Prolog tc 
naming the target form is: 

(Exprcode; instr(store, A d d r ) )  

where Exprcode and A d d r  are Prolog variables corresponding to (expression code) 
(address) .  We have to define the relationship between X ,  Expr ,  Exprcode and A( 
Suppose the source language names are to be mapped into machine addresse: 
accordance with a dictionary D. Then one necessary condition is expressed by 



LOGIC PROGRAMMING AND COMPILER WRITING 111 

Prolog goal: 

lookup(X,  D ,  A d d r )  

The condition relating Expr and Exprcode may be expressed by  the goal: 

encodeexpr(Expr, D ,  Exprcode) 

where the meaning of the predicate ‘encodeexpr((l) ,  (2), (3) ) ’  is ‘ ( 3 )  is the code for 
the expression (1) conforming to dictionary (2)’. If ‘encodestatement(( 1). (2), ( 3 ) ) ’  is 
a similar predicate meaning ‘ (3)  is the code for the statement (1) conforming ta 
dictionary (2)’, then the complete Prolog clause we require is: 

encodestatement( assign( name( X), Expr) ,  D ,  
(Exprcode; 
instr(store, A d d r ) )  

) :- 
lookup(X,  D ,  Addr ) ,  
encodeexpr(Expr, D ,  Exprcode). 

All we have done so far is to make precise the informal rule for compiling an 
assignment statement. Now the resulting clause is not only an exact statement of the 
rule, but will also actually be the part of the compiler responsible for implementing the 
rule. The clause represents one case of the procedure ‘encodestatement(( l) ,  (2), (3) ) ’  
which takes as input a statement ( 1  ) and a dictionary (2) and produces as output object 
code ( 3 ) .  

If we regard the clause as just a statement of a rule, the ordering of the two goals in the 
body of the clause is irrelevant. Now usually the order is very important when we want 
also to use the clause as part of a practical procedure. However in this case, as for many 
of the other clauses which make up the compiler, it will become clear that the clause will 
function perfectly well whichever order is chosen. 

Compiling Arithmetic Expressions 
We already know the clauses for ‘lookup’, so let us move on to the clauses for 

‘encodeexpr’. For reasons which will become clearer later, ‘encodeexpr’ is defined in 
terms of another predicate: 

encodeexpr(Expr, D,  Code) :- 
encodesubexpr(Expr, 0 ,  D ,  Code).  

The extra (integer) argument of ‘encodesubexpr’ provides information about the context 
in which the expression occurs, and is zero unless the expression is a subexpression of 
another expression. Let us now look at the clauses for ‘encodesubexpr’ and see how they 
embody rules for translating the different types of arithmetic expression. 

If the expression is just a constant (const)  then the instruction: 

LOADC (const)  

has the desired effect of loading the constant into the accumulator. Similarly, if the 
expression is a location named (name)  then the instruction: 

LOAD ( a d d r )  

loads the current value of the location, where (addr)  is the location’s address. These 
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two rules are expressed in Prolog by the clauses: 

encodesubexpr(const(C),-,, instr(Zoadc, C )  ). 

encodesubexpr (name( 27) ,~ D,  instr( load, A d d r )  ) :- 
lookup(X,  D ,  Addr ) .  

The final possibility is a composite expression of the form: 

(expression 1 )(operator)(expression 2 )  

If (expression2) is simply a constant or location name, the code generated for the 
composite expression takes the form: 

(expression 1 code) 
(instruction) 

where (expression 1 code) is the translation of (expression 1 )  and (instruction) is the 
appropriate machine instruction which applies (operator) to the value in the 
accumulator and operand (expression 2 ) .  For example: 

(expression) + 7 

translates to: 

(expression code) 
ADDC 7 

The clauses which express this more generally are: 

encodesubexpr(expr( Op, Expr l  , Expr2) ,  N ,  D,  
(Expr  1 code; 
Instruct ion) 

):- 
apply(Op,  Expr 2 ,  D ,  Instruction), 
encodesubexpr(Expr 1, N ,  D ,  Expr 1 code). 

upply( Op, const( C),-, instr( Opcode, C )  ):- 
literalop(Op, Opcode). 

apply( Op, name(X) ,  D ,  instr( Opcode, A d d r )  ):- 
memoryop( Op, Opcode), 
lookup(X,  D ,  Addr ) .  

literalop( + , addc). memoryop( + , add) .  
literalop( - , subc). memoryop( - , sub). 
literalop( *, mulc). mernoryop(*, mul). 
literalop(/, dizic). memoryop( / , div) .  

Notice how the information residing in the clauses for ‘litera-lop’ and ‘memoryop’ would 
convenrionally be treated as tables of dara rather than procedures. 

(The following covers the more general case where (expression 2 )  is composite, and 
may be skipped on first reading.) 
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In this more general case, the code will have to be of the form: 
(expression 2 code) 
STORE ( temporary)  
(expression 1 code) 
(op-code) ( temporary)  

where (expression 2 code) evaluates (expression 2 )  and the result is stored temporarily at 
address (temporary); (expression 1) is then evaluated and the instruction of type (op-  
code) applies (operator) to the pair of values respectively contained in the accumulator 
and previously stored at location (temporary).  Note that if (expression 1 code) itself 
requires temporary storage locations, these must all be different from (temporary).  
These requirements are met by the clause: 

encodesubexpr(expr( Op, Expr 1, Expr 2 ) ,  N ,  D ,  
(Expr  2 code; 
instr(store, Addr ) ;  
Expr 1 code; 
instr( Opcode, A d d r ) )  

):- 
camp (ex( Expr 2 ) ,  
lookup(N,  D ,  Addr ) ,  
encodesubexpr(Expr 2,  N ,  D ,  Expr  2code), 
N1 is N+1,  
encodesubexpr(Expr 1 ,  N1, D ,  Expr 1 code), 
memoryop( Op, Opcode). 

complex ( expr(,,-) ) . 
(Here the goal “1 is N +  1’ means “1 is the value of the arithmetic expression Nf l’.) 
The procedure’s extra argument N is an integer which is used as a name to be looked up 
in the dictionary D. In this way the compiler uses integers as ‘private’ names for the 
temporary storage locations it requires. In other respects, temporaries are treated just 
like any other locations defined in the actual source program, and are recorded in the 
same dictionary. Notice how any temporaries required for the evaluation of 
(expression 1 )  are named by the integers N+ 1, N +  2, etc., and thus are distinct from 
the temporary named by the integer N which is used to preserve the previously 
calculated value of (expression 2) while (expression 1) is being evaluated. 

Compiling the Other Statement Types 

compile-the I F  statement: 

The  code for this will take the form: 

Now let us consider a statement type which is, in itself, slightly more complex to 

I F  ( tes t )  T H E N  ( then )  ELSE (else) 

( test  code) 
( then code) 
JUMP ( labeI2)  

(else code) 
(label 1): 

(label 2 ) :  
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where (test  code) causes a jump to (label 1) if the test proves false. As in an assembly 
language program, we have used labels to indicate the instructions whose addresses are 
(label 1 )  and (label 2 ) .  

The Prolog formulation of this is: 

encodestatement(if( Test ,  Then,  Else), D ,  
(Testcode; 
Thencode; 
instrGump, L 2 ) ;  

Elsecode; 
label(L.1); 

label(L2)) 
):- 

encodetest( Test ,  D ,  L1, Testcode), 
encodestatement( Then ,  D ,  Thencode), 
encodestatement(Else, D ,  Elsecode). 

Notice that the clause does not fix the addresses L1 and L 2 ,  but merely indicates 
constraints on their values through labelling the object code. One can think of the 
output from the procedure ‘encodestatement’ as being relocatable code. The output 
term will contain’free variables L1 and L 2  whose values will not be fixed until stage 4 of 
compilation-the assembly stage. This is an example of the use of the logical variable to 
delay specifying certain parts of a data structure. 

The  clauses for ‘encodetest’ are as follows: 

encodetest(test( Op, Arg l  , Arg2) ,  D ,  Label, 
(Exprcode; 
irtstruumpif, Label))  

):- 
encodeexpr(expr( - , A r g l  , Arg2) ,  D ,  Exprcode), 
unlessop(Op,Jumpif). 

unlessop( = , jumpne) .  
unlessop( < , jumpge).  
unlessop( > , jumple).  
unlessop( # , I  jumpeq).  . 
unlessop( < , jumpgt) .  
unlessop( 2, jumpl t ) .  

The test is effected by computing the difference of the two operands to be compared, 
and then applying a conditional jump instruction. ‘Label’ is the address to jump to if the 
test fails. The meaning of the clauses should be clear by analogy with cases previously 
discussed. 

The clauses for translating the remaining statement types are as follows: 

encodestatement(while( Test ,  Do), D ,  
(label(L.1); 

Testcode; 
Docode; 
instrGump, L l ) ;  

label(L2)) 
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):- 
encodetest( Test, D ,  L 2 ,  Testcode), 
encodestatement(D0, D ,  Docode). 

encodestatement( read( name(*), D ,  instr( read, Addr )  ):- 
lookup(X, D,  Addr) .  

encodestatement(write(Expr), D ,  
(Exprcode; 
instr(write, 0 ) )  

):- 
encodeexpr(Expr, D ,  Exprcode). 

encodestatement((S1; S 2 ) ,  D ,  (Code l ;  Code2) ):- 
encodestatement(S1, D ,  Code l ) ,  
encodestatement(S2, D ,  Code2). 

Notice how the ‘serial’ statement: 

(statement 1 ) ;  (statement 2 )  

is treated as just another statement type. 

Constructing the Dictionary 
Now that we have considered all the elements of the source language, it remains to 

describe how a program as a whole is compiled. Many of the clauses already stated have 
referred to a common dictionary D. So far we have tacitly assumed that this dictionary 
(or symbol table) has been constructed in advance and supplied as ‘input’ to each 
procedure which translates source language constructs. Now it happens that, with a 
little care, we can arrange for the dictionary to be built up in the course of the main 
translation process (stage 3). The clauses for ‘lookup’ not only do the job of consulting 
existing dictionary entries, but will also serve to insert new entries as required. In fact 
‘lookup’ is a good example of a ‘multi-purpose’ procedure. Its very useful and rather 
remarkable behaviour depends on the full flexibility of the logical variable. 

Let us first restate the ‘lookup’ clauses (with a slight change in the first clause, to be 
discussed shortly): 

lookup(Name, dic(Name, Value,-,-), Value):- ! . 
lookup(Name, dic(Name 1 Before,-), Value):- 

lookup(Name, dic(Name 1 ,-,-, Af ter ) ,  Value):- 
Name < Namel  , lookup(Name, Before, Value). 

Name> N a m e l ,  lookup(Name, Af ter ,  Value). 

To see how the ‘lookup’ procedure can be used to create a dictionary, consider the effect 
of executing the goals: 

lookup( salt, D ,  X1)  , 
lookup(mustard, D ,  X 2 ) ,  
lookup(vinegar , D ,  X 3 ) ,  
lookup(pepper, D ,  X4) ,  
lookup(salt, D ,  X5)  
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in that order, assuming all the variables are initially uninstantiated, even the dictionary 
argument D. One can interpret these goals as saying: ‘construct a dictionary D such that 
“salt” is paired with X 1  and “mustard” is paired with X 2  and ...’. The first goal is 
immediately solved by the first clause for ‘lookup’ giving: 

D = dic(salt, X 1 ,  Dl ,D2)  

and leaving X1 uninstantiated. Thus variable D is now instantiated to a partially 
specified dictionary. The  second of the original goals is executed next. Execution 
proceeds initially as for a normal call of ‘lookup’ and produces the recursive call: 

lookupimustard, D1, X 2 )  

Now, since D1 is uninstantiated, this goal is solved immediately, giving: 

D = dic(salt, X 1 ,  dic(mustard, X2,D3,  D4), 0 2 )  

In this way ‘lookup’ is inserting new entries in a partially specified dictionary. By the 
time of executing the fifth of the original goals, D is instantiated to a dictionary which 
may be pictured as: 

sa/t: X 1 

0 6  

d 7  0 8  

The effect of the fifth goal is to leave the dictionary unaltered; the only result is the 
instantiation: 

x5 = x1 

Thus both values paired with ‘salt’ are guaranteed to be the same. 
We have seen that: 
1. The  dictionary can be built up as we go along, starting from a free variable, and 

with free variables as the terminal nodes of the dictionary at every stage; 
2. The values which are paired with the names in the dictionary can be left 

unspecified until later-their places are taken by variables, and different variables 
representing the same value will be identified where necessary. 

As used in the compiler, the ‘lookup’ procedure builds up a dictionary associating 
storage location names with free variables representing their addresses. These 
addresses are only filled in during the assembly stage of compilation. 

We shall now consider the meaning of, and reason for, the extra ‘!’ in the first clause of 
‘lookup’. A fundamental reason for the change is that an ordered dictionary for a given 
set of pairings is not unique. For example, the two ordered dictionaries diagrammed 
below embody the same set of associations: 

salt ; sel pepper: poivre 

: vinaigre mustard: m e :  vinaigre 
P A 

salt: sel 
A 

Y .  
pepper :poivre 

A 
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In theory, the ‘lookup’ procedure could choose to build either of these, or any other 
equivalent dictionary. This is reflected in the fact that a ‘lookup’ goal such as: 

lookup(salt, D, X l )  

with an uninstantiated variable as second argument will match not only the first clause 
for ‘lookup’ but also either of the other two. These alternative matches in principle allow 
different but equivalent forms of dictionary to be constructed. 

Obviously we wish to limit the choice to just one of these equivalent forms. 
Moreover, the generation of alternative forms may be highly inefficient, if not 
impossible. This is because a match of, say, 

lookup( salt. D ,  X1)  

against the second clause gives rise to the goal: 

salt < Namel  

with Namel  uninstantiated. Now in theory this goal should generate any name which is 
ordered later than ‘salt’. In practice, it is highly undesirable to execute a goal with such 
a large set of alternative solutions, and the actual implementation of ‘ < ’ may well be 
such as to make the goal impossible to execute. 

The alert reader will also have noticed that the deciarative meaning of the clauses for 
‘Zookup’ does not guarantee a dictionary of the type we require-that is, an ordered 
dictionary (with no name repeated). For example, if (d i c )  is the dictionary pictured as: 

then ‘lookup(a, (d i c ) ,  1)’ is true, but (d i c )  is not ordered. Strictly speaking, a check 
should be made somewhere in the compiler that the dictionary created and used during 
compilation is indeed ordered. This check is tiresome and in practice unnecessary. 

All of these various potential drawbacks to the ‘creative’ use of ‘lookup’ are 
circumvented by inserting the cut operator I ! ’  as a pseudo-‘goal’ in the first clause. The 
cut operator is an additional control device provided by Prolog, which should be 
ignored when reading a clause declaratively. (With certain usages of cut, there is no 
meaningful declarative reading for the ‘clause’; however this does not apply to any of 
the clauses in this paper.) When a ‘cut’ pseudo-goal has been executed, if backtracking 
should later return to that point, the effect is to fail immediately the ‘parent’ goal, i.e. 
the goal which activated the clause containing the cut. In other words, the cut operation 
commits the Prolog system to all choices made since the parent goal was invoked. For 
our ‘lookup’ procedure, the cut means ‘if a match is obtained against the first clause, 
don’t ever try any of the subsequent clauses’. 

Given Prolog’s procedural semantics, it is not difficult to see how the qualification 
expressed by the cut symbol ensures that ‘Zookup’ constructs a unique ordered 
dictionary starting from an initially uninstantiated variable. The  dictionary is ‘unique’ 
except that the terminal nodes are free variables which really represent unspecified 
subdictionaries. All of these variables must finally be instantiated to ‘void’ in order to 
obtain the smallest possible dictionary meeting the required conditions. 
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Compiling ,The Whole Program, And The Assembly Stage 
The translation of a complete source program (or, rather, its abstract structure) into 

an object program (structure) with absolute addresses is expressed by the following 
clause: 

compile(Source, 
(Code; 
instr(halt, 0); 
block( L)) 

):- 
encodestatement(Source, D ,  Code), 
assemble( Code, 1, NO), 
N1 is NO+1, 
alZocate(D, N1, N), 
L is N-N1.  

(A goal, such as ‘L  is N-N1’ above, of the form ‘ ( u a r )  is (expr)’ means that ( z w )  is 
the value of the arithmetic expression (expr) . )  The result of compiling the program 
Source is a sequence of instructions Code followed by  a H A L T  instruction and then a 
block of storage for the variables used in Source. Unlike most of the compiler clauses 
described so far, the particular order of the goals in this clause is essential control 
information. 

Stage 3 of compilation (relocatable code generation) is represented by the goal: 

encodestatement(Source, D ,  Code) 

Observe that when this goal is invoked, dictionary D is completely unspecified, i.e. D is 
still a free variable. So stage 3 really returns two outputs-the code and the dictionary, 

Strictly speaking, for logical soundness, the clause for ‘compile’ should contain an 
extra goal, say: 

ordereddictionary( D )  

to check that D is indeed an ordered dictionary. We may imagine this goal being 
inserted after the ‘encodestatement’ goal. However, as noted previously, this check can 
be dispensed with in practice. 

At the end of stage 3 ,  Code still contains many free variables-representing the yet to 
be specified addresses of writeable locations and labelled instructions. Thus stage 3 
makes extensive use of the full power of the logical variable to delay fixing of addresses 
until stage 4. The  goal: 

assemble(Code, 1, NO) 

computes the addresses of labelled instructions and returns NO, the address of the end 
of Code. N1 is therefore the address of the start of the block of storage locations. The 
goal: 

allocate(D, N1, N) 

is responsible for laying out the storage required for the source language symbols 
contained in dictionary D .  It  fills in the corresponding addresses and returns N, the 
address of the end of the storage block. Finally, the length L of the storage block is 
calculated from N and N1. 
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The procedure for ‘assemble’ is neat and simple: 

assemble(( Code 1 ; Code 2 ) ,  NO, N):- 
assemble(Code1, NO, N l ) ,  
assemble(Code2, N1, N). 

assemble(instr(-,-), NO, N)- N is NO f 1. 
assemble(label(N), N ,  N). 

Note that ‘assemble(( I), ( 2 ) ,  ( 3 ) ) ’  means that ( 2 )  is the start address and (3 )  the end 
address of the sequence of instructions (1). 

The procedure for ‘allocate’ has a similar character: 

allocate(void, N ,  N):- ! . 
allocate(dic(Name, N1, Before, Af ter ) ,  NO, N):- 

allocate(Before, NO, N l), 
N2 is N1+1 ,  
allocate(After, N 2 ,  N). 

Observe that the layout of the source symbols will be in dictionary order. 
Note that the dictionary input to ‘allocate’ from ‘encodestatement’ is incomplete in the 

sense that the terminal nodes are still variables. The ‘allocate’ procedure in fact chooses 
the smallest possible dictionary, i.e. the one which contains only symbols actually 
occurring in the source program. If it chose otherwise, the object program would still 
be correct but would contain extra unused storage locations. The proper choice is 
achieved by placing the clause for the ‘void’ case first, with a cut ‘!’ to prevent any 
possibility of backtracking considering other alternatives, cf. the use of cut in ‘lookup’. 

We have now looked at all the clauses needed to perform the code generation and 
assembly stages of the compiler. Except where otherwise noted, the particular order in 
which these clauses are stated is unimportant, i.e. the performance will be virtually the 
same whichever order is chosen. 

Syntax Analysis 
We shall now show very briefly how the parser, or syntax analysis stage of 

compilation, is programmed in Prolog. Reference 3 gives a much fuller introduction 
to the basic method we use for writing parsers in logic. The theory of this method is 
described by Colmerauer’ from whom the technique originated. The clauses we 
require are closely related to the following BNF grammar of the source language: 

* .- - (program) . .  
(statements) : :- - 

. .- - (statement) . .  

. . -  . .  - . . -  . .  - 

(statements) 
(statement) I 
(statement); (statements) 
(name):  = ( e x p )  I 
I F  ( tes t )  THEN (statement) ELSE (statement) I 
WHILE ( t e s t )  DO (statement) I 
READ (name) 1 
WRITE ( expr )  I 
((statements))  
(expr)(comparison op)(expr)  

(exPr 1) 
(exPr)(op 2)(exPr 1) I 
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(expr 1 )  : : = (expr I ) ( o p  I)(expr 0) I 
(expr 0) 

(expr 0) : := (name) I 
(integer) I 
( (expr)  ) 
= I < I > I < I 2 I + (comparison op)  : := 

(OP 2 )  . . =  . .  " I /  
( O P  1) : : =  + I -  

The essential idea behind the translation into Prolog is that a BNF non-terminal 
becomes a predicate of three arguments: 

(non-terminal)( (start) ,  (end),  (name)) 

meaning 'the token list (start)  commences with a phrase of type (non-terminal) ending 
at a point where the list of remaining tokens is (end);  the structure of the phrase is 
identified by (name)' .  Now because the grammar contains some left recursive rules, 
and for other efficiency reasons, parts of the grammar are rewritten to facilitate left-to- 
right top-down parsing. Some of the resulting predicates have to be given an additional 
argument which is the name of the preceding phrase. For example: 

restexpr((n), (start) ,  (end),  (narneOj, (name))  

means that the token list (start)  commences with the remainder of an arithmetic 
expression of precedence (n) ending at ( end)  and the whole expression is named 
(name) if the preceding subexpression is named (name0). Here then is the Prolog 
translation of the BNF grammar: 

program(Z0, Z ,  X) :- statements(Z0, Z,  X ) .  

statements(ZO,Z, X )  :- statement(ZO,Zl, XO), reststatements(Z1, Z ,  X O ,  X). 

reststatements((';'.ZO), Z,  XO, (XO; X ) )  :- statements(Z0, Z ,  -X). 
reststatements(Z, Z ,  X ,  X ) .  

statement(( V.': = '.ZO), Z ,  assign(name( V ) ,  Expr))  :- 

statement((if.ZO), Z ,  if( Test, Then, Else)) :- 
atom( V), expt (Z0,  Z,  Expr). 

test(Z0, ( then.Zl) ,  Test), 
statement(Z1, (else.Z2), Then), 
statement(Z2, Z ,  Else). 

test(Z0, (do .Z l ) ,  Test) ,  
statement(Z1, Z ,  Do). 

statement((whiZe.ZO), Z ,  while( Test, Do)) :- 

statement((read. V.Z), Z ,  read(name( V))) :- atom(V). 
statement((write.ZO), Z ,  write(Expr)) :- expr(ZO1, Z ,  Expr). 
statement(('('.ZO), Z ,  S )  :- statements(Z0, ( ') ' .Z), S).  

test(Z0, Z ,  test(Op, X 1 ,  X 2 ) )  :- 
expr(Z0, (Op.Zl ) ,  X1 ), comparisonop( Op),  
expr(Z1, Z ,  X2) .  
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cxpr(ZO,Z,  X )  :-subexpr(2,2O,Z,  X ) .  

subexpr(N, 2 0 ,  Z ,  X )  :- N > 0, N 1 is N - 1 ,  
subexpr(N1, ZO,Z1, XO), 
restexpr(N, Z 1 , 2 ,  XO, X).  

subexpr(0, (X .Z) ,  Z ,  name(X))  :- atom(X) .  
subexpr(0, ( X . Z ) ,  2, const(X)) :- integer(X). 
subexpr(0, ( ‘ ( ’ Z O ) ,  Z ,  X )  :- subexpr(2,ZO,(‘)’.Z),X). 

restexpr(N, (Op.ZO), 2, X1, X )  : -op (N,  Op), N 1 is N -  1, 
subexpr(Nl ,ZO, Z1, X 2 ) ,  
restexpr(N, Z 1 , 2 ,  expr(Op,  X1, X 2 ) ,  X). 

restexpr(N, Z ,  Z ,  X ,  X). 

coniparisonop( = ). 
comparisonop( < ). 
comparisonop( > ). 
comparisonop( d ). 
comparisonop( 2 ). 
comparisonop( f ). 

THE ADVANTAGES O F  PROLOG FOR COMPILER WRITING 

This section summarizes the particular advantages of Prolog as a language for writing 
compilers. Many of the advantages should be clear from the main example discussed 
above. I t  is important to take into account, not just the compiler which is the end 
product, but also the work which must go into initially designing and building it and 
into subsequently ‘maintaining’ it. 

So let us review how one might set about constructing a compiler. Initially, the 
picture is just of a black box with source programs as input and correctly translated 
object programs as output. The  first consideration is to decide how the output is related 
to the input. I t  is natural to examine the structure of the source language and to devise 
for each element of the language a rule for translating it into target language code. 
These rules form a specification of the compiler’s function. The  final and generally 
more laborious stage of compiler construction involves implementing procedures 
which efficiently carry out the translation process in accordance with the specification. 

The major advantage of implementation in Prolog is that it is possible for the final 
stage to be almost trivial. For a compiler such as the sample one discussed, it is not a 
great exaggeration to say that 

‘the specification is the implementation’. 

Thus the procedures which make up the compiler consist of clauses, each of which can 
generally be interpreted as a rule describing a possible translation of some particular 
construct of the source language into the target language. The burden of the 
implementation stage reduces to ensuring that the specification can be used as an 



122 DAVID H .  D. WARREN 

efficient implementation. This requires the addition of suitable control information 
(i.e. choosing the ordering of clauses and goals) and may involve some rewriting of parts 
of the specification to allow an efficient procedural interpretation. 

The closeness of implementation and specification brings many benefits: 
1 .  The implementation is more readable and may be virtually self-documenting. 
2. The  correctness (or otherwise) of the implementation is more easily apparent and 

the scope for error is greatly reduced. As long as each clause is a valid rule for 
translating the source language, one can be confident that the compiler will not 
generate erroneous code. 

3 .  Compiler modifications and source language extensions are more readily in- 
corporated, since the compiler consists of small independently-meaningful units 
(clauses) which are directly related to the structure of the source language. 

There are a number of conventional programming language features which would 
normally have to be used in a compiler implementation, but which do not appear 
explicitly in a Prolog implementation. These include assignment, references (pointers), 
operations for creating data structures, operations for selecting from data structures, 
conditional or test instructions, and the goto instruction. Of course, all these features 
are being used implicitly, behind the scenes, by the Prolog system. In effect, the Prolog 
system assumes much of the responsibility for ‘coding up’ the implementation. This 
relieves the programmer of tedious details and protects him against errors commonly 
associated with the low-level features mentioned, e.g. 

1 .  Referring to a non-existent component of a data structure. 
2. Attempting to use the value of a variable before it has been assigned. 
3 .  Attempting to use a value which is obsolete, such as a ‘dangling reference’ to 

4. Overwriting a value or part of a data structure which is still needed elsewhere in 

5. Omitting to test for a special case before dropping through to the else clause of a 

In a conventional language, errors such as these typically produce bugs which are 
difficult to trace and eradicate. At best the program will halt immediately with some 
error message, which may or may not help the programmer to pinpoint the bug. More 
usually, the bug will only manifest itself later in the processing, by which time the root 
cause will be difficult to determine. 

Such situations cannot arise with the basic Prolog language covered here, since none 
of the low-level features mentioned is present in the language. Moreover, the 
(procedural) semantics of Prolog is totally defined; a syntactically correct program is 
guaranteed to be legal, and is incapable of performing, or even attempting to perform, 
any invalid or undefined operation. If there is a ‘bug’ in a Prolog program, it merely 
means that the program, while being perfectly legal, does not do exactly what the 
programmer intended. The  actual behaviour is entirely predictable and therefore the 
‘bug’ is normally found relatively easily. A totally defined semantics is of great practical 
significance and is almost unique among programming languages. 

T o  summarize, Prolog has the following advantages as a compiler-writing tool: 
1 .  Less time and effort is required. 
2. There is less likelihood of error. 
3 .  The resulting implementation is easier to ‘maintain’ and modify. 

storage which has been de-allocated. 

the program. 

conditional. 
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T H E  PRACTICABILITY O F  PROLOG FOR COMPILER WRITING 
Granted that Prolog is a very congenial language for compiler writing, the question 
naturally arises whether an implementation in Prolog can perform well enough to be 
practically useful. The  answer obviously depends on how efficiently Prolog itself is 
implemented. 

The  first Prolog system was an interpreter written in Fortran at the University 
of Marseille.8 This proved to be surprisingly fast. More recently, building on the 
techniques developed at Marseille, two colleagues and I have implemented a Prolog 
compiler for the DECsystem-10 machine.’, l o  

The machine code generated by this compiler is reasonably efficient and is not so very 
different from that which might be produced by a compiler for a conventional list- or 
record-processing language. The  principal effect of the compilation is to translate the 
head of each clause into instructions which will do the work of matching against any 
goal. Of the two terms involved in the matching, it is the clause head which is compiled, 
since this is uninstantiated prior to the matching, unlike the goal. Because the variables 
in the head are uninstantiated prior to the matching, their first occurrences can be 
compiled into simple assignment operations. 

The code generated for a compound term has to distinguish between two cases. If the 
subterm matches against a variable, a new data structure must be constructed and 
assigned to the variable. This case is handled by an out-of-line subroutine. The other 
case concerns matching against a non-variable. This is performed essentially by in-line 
code. I t  comprises a test for matching functors (record types), followed by the compiled 
form of each of the subterms of the compound term. This code will be responsible for 
accessing subcomponents of the matching data structure. 

Many Prolog procedures consist of a number of clauses giving a definition by cases- 
each clause accounts for a different possible form of the input. This characteristic is 
particularly evident in compiler writing as illustrated above. For example, the clauses 
for ‘encodestatement’ each match a different statement type. Here, and more generally, it 
is natural to place the principal input as first argument of the predicate. Our Prolog 
compiler capitalizes on this fact by compiling in a fast ‘switch’ or ‘computed goto’, 
branching on the form (principal functor) of the first argument. Thus instead of trying 
each clause in turn, the code automatically selects only appropriate clauses (often just 
one). 

As far as the general efficiency of Prolog is concerned, space economy is more likely to 
be a limitation than speed. From our discussion of the (basic) language it is clear that the 
responsibility for storage management falls entirely on the system and not on the 
programmer. In meeting this responsibility, the Prolog compiler employs a certain 
degree of sophistication. 

In particular, it automatically classifies variables into two types (‘local’ and ‘global’) 
with storage allocated from different areas analogous to the ‘stack’ and ‘heap’ of 
Algol-68. Local storage is recovered automatically by a conventional stack mechanism 
when a procedure returns, provided the procedure has no more alternative multiple 
results to generate through backtracking. In addition, a second stack mechanism 
associated with backtracking ultimately recovers all storage, both local and global. 
Thus a garbage collector is not an essential part of the system, although one is provided. 
This is in contrast to the situation for the ‘heap’ of Algol-68 and similar languages, 
where storage can only be recovered by the potentially very expensive process of 
garbage collection. 

9 
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Although the automatic storage management of basic Prolog is quite effective, it is 
not adequate on its own for really large tasks. For example, it is currently unrealistic to 
expect a compiler written in basic Prolog to compile a sizable program in one step, as, 
unaided by the user, the storage requirements would exhaust main memory. A 
technique which can be adopted at present is to compile small units of the program, e.g. 
‘lines’, ‘blocks’ (or in the case of Prolog itself ‘clauses’), using the ‘pure’ methods we 
have described; the compiler as a whole consists of a number of ‘pure’ procedures 
linked together using more ad hoc (and conventional) methods. The  ad hoc parts are 
written using extensions beyond the basic Prolog language, which are outside the scope 
of this paper. The  essential feature of the ‘impure’ code is that use is made of further 
storage areas and external files, all of which have to be managed directly by the 
programmer. This approach to compiler writing in Prolog enables one to produce a 
practical implementation, large parts of which are written in the basic Prolog language, 
with all the advantages discussed above. 

Given the theme of this paper, it should come as no surprise that the Prolog compiler 
is itself written in Prolog, using the very principles which are the subject of this paper. 
Data on this ‘bootstrapped’ compiler may therefore give some idea of the kind of 
performance attainable with Prolog as the implementation language. Note that the 
compiler does not attempt any sophisticated optimization. 

The compiler generates about 2 machine instructions ( = 2 machine words, of 36 bits 
each) per source symbol (i.e. constant, functor or variable). It takes typically around 
10.6 seconds to generate 1000 words of code. The  amount of ‘short-term’ (Prolog- 
controlled) working storage required during compilation is rarely more than 5K words, 
i.e. this is a normal bound on the amount of storage required to compile any one clause. 
(The remaining ‘long-term’ (programmer-controlled) working storage is needed 
primarily for a global symbol table, the size of which depends on the number of 
different functors in the program being compiled.) The total code of the compiler itself 
(which is not overlayed) is about 25K words. 

Briefly, the performance indicated by these figures is reasonably acceptable, 
although naturally it falls short of what can be attained in a low-level language with 
efficiency as the only objective. Nevertheless, the performance is not out of line with 
that of certain other items of software on the DECsystem-10 (e.g. the manufacturer’s 
assembler, ‘MACRO’). 

Prolog is a promising language for software implementation where the main priority 
is to have a correctly working system available quickly, or where the system 
specification is liable to change. Better performance can certainly be obtained from an 
implementation in a lower-level language; for this, a preliminary Prolog formulation 
can serve as a very useful prototype. I t  is likely that most of the improvement will be 
attributable to a few relatively simple but heavily used procedures (e.g. lexical analysis, 
dictionary lookup), and so a mixed language approach may be an attractive possibility. 
An alternative view (which I favour) is to look for more sophisticated ways of compiling 
special types of Prolog procedure, guided probably by extra pragmatic information 
provided by the Prolog programmer. 
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